282 research outputs found

    Unitary designs and codes

    Full text link
    A unitary design is a collection of unitary matrices that approximate the entire unitary group, much like a spherical design approximates the entire unit sphere. In this paper, we use irreducible representations of the unitary group to find a general lower bound on the size of a unitary t-design in U(d), for any d and t. We also introduce the notion of a unitary code - a subset of U(d) in which the trace inner product of any pair of matrices is restricted to only a small number of distinct values - and give an upper bound for the size of a code of degree s in U(d) for any d and s. These bounds can be strengthened when the particular inner product values that occur in the code or design are known. Finally, we describe some constructions of designs: we give an upper bound on the size of the smallest weighted unitary t-design in U(d), and we catalogue some t-designs that arise from finite groups.Comment: 25 pages, no figure

    Unbiased bases (Hadamards) for 6-level systems: Four ways from Fourier

    Full text link
    In quantum mechanics some properties are maximally incompatible, such as the position and momentum of a particle or the vertical and horizontal projections of a 2-level spin. Given any definite state of one property the other property is completely random, or unbiased. For N-level systems, the 6-level ones are the smallest for which a tomographically efficient set of N+1 mutually unbiased bases (MUBs) has not been found. To facilitate the search, we numerically extend the classification of unbiased bases, or Hadamards, by incrementally adjusting relative phases in a standard basis. We consider the non-unitarity caused by small adjustments with a second order Taylor expansion, and choose incremental steps within the 4-dimensional nullspace of the curvature. In this way we prescribe a numerical integration of a 4-parameter set of Hadamards of order 6.Comment: 5 pages, 2 figure

    On the high density behavior of Hamming codes with fixed minimum distance

    Full text link
    We discuss the high density behavior of a system of hard spheres of diameter d on the hypercubic lattice of dimension n, in the limit n -> oo, d -> oo, d/n=delta. The problem is relevant for coding theory. We find a solution to the equations describing the liquid up to very large values of the density, but we show that this solution gives a negative entropy for the liquid phase when the density is large enough. We then conjecture that a phase transition towards a different phase might take place, and we discuss possible scenarios for this transition. Finally we discuss the relation between our results and known rigorous bounds on the maximal density of the system.Comment: 15 pages, 6 figure

    A simple construction of complex equiangular lines

    Full text link
    A set of vectors of equal norm in Cd\mathbb{C}^d represents equiangular lines if the magnitudes of the inner product of every pair of distinct vectors in the set are equal. The maximum size of such a set is d2d^2, and it is conjectured that sets of this maximum size exist in Cd\mathbb{C}^d for every d2d \geq 2. We describe a new construction for maximum-sized sets of equiangular lines, exposing a previously unrecognized connection with Hadamard matrices. The construction produces a maximum-sized set of equiangular lines in dimensions 2, 3 and 8.Comment: 11 pages; minor revisions and comments added in section 1 describing a link to previously known results; correction to Theorem 1 and updates to reference

    Commutative association schemes

    Full text link
    Association schemes were originally introduced by Bose and his co-workers in the design of statistical experiments. Since that point of inception, the concept has proved useful in the study of group actions, in algebraic graph theory, in algebraic coding theory, and in areas as far afield as knot theory and numerical integration. This branch of the theory, viewed in this collection of surveys as the "commutative case," has seen significant activity in the last few decades. The goal of the present survey is to discuss the most important new developments in several directions, including Gelfand pairs, cometric association schemes, Delsarte Theory, spin models and the semidefinite programming technique. The narrative follows a thread through this list of topics, this being the contrast between combinatorial symmetry and group-theoretic symmetry, culminating in Schrijver's SDP bound for binary codes (based on group actions) and its connection to the Terwilliger algebra (based on combinatorial symmetry). We propose this new role of the Terwilliger algebra in Delsarte Theory as a central topic for future work.Comment: 36 page

    Transmutations and spectral parameter power series in eigenvalue problems

    Full text link
    We give an overview of recent developments in Sturm-Liouville theory concerning operators of transmutation (transformation) and spectral parameter power series (SPPS). The possibility to write down the dispersion (characteristic) equations corresponding to a variety of spectral problems related to Sturm-Liouville equations in an analytic form is an attractive feature of the SPPS method. It is based on a computation of certain systems of recursive integrals. Considered as families of functions these systems are complete in the L2L_{2}-space and result to be the images of the nonnegative integer powers of the independent variable under the action of a corresponding transmutation operator. This recently revealed property of the Delsarte transmutations opens the way to apply the transmutation operator even when its integral kernel is unknown and gives the possibility to obtain further interesting properties concerning the Darboux transformed Schr\"{o}dinger operators. We introduce the systems of recursive integrals and the SPPS approach, explain some of its applications to spectral problems with numerical illustrations, give the definition and basic properties of transmutation operators, introduce a parametrized family of transmutation operators, study their mapping properties and construct the transmutation operators for Darboux transformed Schr\"{o}dinger operators.Comment: 30 pages, 4 figures. arXiv admin note: text overlap with arXiv:1111.444

    MUBs inequivalence and affine planes

    Full text link
    There are fairly large families of unitarily inequivalent complete sets of N+1 mutually unbiased bases (MUBs) in C^N for various prime powers N. The number of such sets is not bounded above by any polynomial as a function of N. While it is standard that there is a superficial similarity between complete sets of MUBs and finite affine planes, there is an intimate relationship between these large families and affine planes. This note briefly summarizes "old" results that do not appear to be well-known concerning known families of complete sets of MUBs and their associated planes.Comment: This is the version of this paper appearing in J. Mathematical Physics 53, 032204 (2012) except for format changes due to the journal's style policie

    Symmetric Informationally Complete Quantum Measurements

    Get PDF
    We consider the existence in arbitrary finite dimensions d of a POVM comprised of d^2 rank-one operators all of whose operator inner products are equal. Such a set is called a ``symmetric, informationally complete'' POVM (SIC-POVM) and is equivalent to a set of d^2 equiangular lines in C^d. SIC-POVMs are relevant for quantum state tomography, quantum cryptography, and foundational issues in quantum mechanics. We construct SIC-POVMs in dimensions two, three, and four. We further conjecture that a particular kind of group-covariant SIC-POVM exists in arbitrary dimensions, providing numerical results up to dimension 45 to bolster this claim.Comment: 8 page

    Discrete phase space based on finite fields

    Full text link
    The original Wigner function provides a way of representing in phase space the quantum states of systems with continuous degrees of freedom. Wigner functions have also been developed for discrete quantum systems, one popular version being defined on a 2N x 2N discrete phase space for a system with N orthogonal states. Here we investigate an alternative class of discrete Wigner functions, in which the field of real numbers that labels the axes of continuous phase space is replaced by a finite field having N elements. There exists such a field if and only if N is a power of a prime; so our formulation can be applied directly only to systems for which the state-space dimension takes such a value. Though this condition may seem limiting, we note that any quantum computer based on qubits meets the condition and can thus be accommodated within our scheme. The geometry of our N x N phase space also leads naturally to a method of constructing a complete set of N+1 mutually unbiased bases for the state space.Comment: 60 pages; minor corrections and additional references in v2 and v3; improved historical introduction in v4; references to quantum error correction in v5; v6 corrects the value quoted for the number of similarity classes for N=
    corecore